		(AUTONOMOUS)		UK					
B.Tech. III Year II Semester Supplementary Examinations May-2025									
B. Tech. III Year II Semester Supplementary Examinations May-2025 LINUX PROGRAMMING									
		(Computer Science & Engineering)							
Time	. 3		ax. Ma	rke	60				
		PART-A	arr mad	1 69.	00				
		(Answer all the Questions 5 x $2 = 10$ Marks)							
1	a	Write syntax for changing ownership and group name on a given file/s.	CO 1	L2	2M				
T	b	What is noglob option? Write the syntax to ON or OFF the option.	CO1	L1	2M				
		How do an undo command work in vi?	CO2 CO3						
	C J			L1	2M				
	d	What would be the effect of the command grep "UNIX Unix unix" file1	CO4	L1	2M				
	e	Write about eval command.	CO5	L2	2M				
		PART-B							
		(Answer all Five Units 5 x $10 = 50$ Marks)							
		UNIT-I							
2	a	Illustrate the user and group in Unix. Explain the related commands for	CO1	L3	5M				
		changing ownership and group.							
	b	Discuss about listing directories and files.	CO1	L2	5M				
		OR							
3	a	Explain the security levels provided in Unix environment. How to change	CO1	L2	5 M				
		permissions of a file?							
	b	Brief umask command.	CO1	L2	5M				
		UNIT-II							
4	9	What is JOB? Explain in detail foreground and background jobs. Give	CO2	L2	5M				
-	а	example.	COL		5111				
	h	Explain sort command with its options.	CO2	L2	5M				
	U	OR			JIVI				
5		Explain (i) Aliases (ii) Unix session	CO2	L2	6M				
5									
	D	Describe how to resume foreground and kill background job by using	CO2	L3	4 M				
		various kill options.							
		UNIT-III							
6		How text manipulation is done in vi? Explain.	CO3	L3	5M				
	b	Explain about comparing files with examples.	CO3	L2	5M				
		OR							
7		Explain talk and write command.	CO3	L2	10M				
		UNIT-IV							
8	a	What does a startup script consist of?	CO4	L2	4M				
	b	Write the basic script concepts orientes with Korn shell.	CO4	L3	6M				
		OR							
9		Describe the overview of Sed and awk.	CO 4	L3	10M				
-		UNIT-V	_ ~ *						
10			COF	TO	101/				
10		Explain (i) special perspectors	CO5	L2	10M				
		(i) special parameters (ii) (ii) command history							
		(ii) (ii) command history							
11		OR	COF	12	1037				
11		Discuss in detail about the variables associated with C shell,	CO5	L3	10M				

*** END ***

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

O.P.Code: 18CS0532 **R18**

H.T.No.

O.P.Code:	18CS0511
------------------	----------

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

H.T.No.

R18

B.Tech II Year II Semester Supplementary Examinations May-2025 OBJECT ORIENTED PROGRAMMING

(Common to CSIT & CSE)

,

Max. Marks: 60

		PART-A	max	• mai	KS: 60
		(Answer all the Ouestions 5 x $2 = 10$ Marks)			
-		a Explain how Java provides security and portability	CO	1 13	224
	1	D Explain about constructors.	CO2		
	0	four mour of uncaught LACEDHOIR	CO3		
	C	Write the general form of generic class.	CO4		
	e		COS		
		PART-B		, L2	2M
		(Answer all Five Units $5 \ge 10 = 50$ Marks)			
		UNIT-I			
2	a	What is Conditional Operator? Give any suitable example	COI	τ.	
	b	What are Java Selection Statements? Give an example to each one.	CO1		
		OR	CO1	L1	5M
3	a	What is a Data Type? How to declare variable in Java? Write the Rules.	001	то	
	b	What is Byte Code? What are the different states of Java Program	CO1		5M
		execution?	CO1	L2	5M
		UNIT-II			
4	a	What is a Class, Method and Object? Write the syntax to define these in	000		
		java.	CO2	L3	5M
	b	Write a java program to find the Area of Circle using Constructor.	000	TO	
		OR	CO2	L3	5M
5	a		000	Та	
	b	What is Inheritance? Explain types of inheritances.	CO2	L3	5M
		UNIT-III	CO2	L2	5M
6	а				
	b	Explain about Nested try statements with an example.	CO3	L2	5M
	~	What are Java's Built-in Exception? Write the importance of finally block.	CO3	L2	5M
		OR			
7	a	How to set the priority to threads? what are the different ranges?	а С С С С		
	b	Write a java program to create two threads and execute simultaneously.		L2	6M
			CO3	L3	4M
8	я	Write a java program to implement Mouse Events.			
Ŭ	h	Discuss about Source, Event and List		L3	6M
	N ^o	Discuss about Source, Event and Listeners in event handling.	CO4	L3	4M
9	я	Write a java program to implement K			
	h	Write a java program to implement Key events.	CO4	L3	5M
	U.	Explain about the AWT Menu design.	CO4	L2	5M
10		UNIT-V			
10	a 1. 1	What is JDBC? Explain architecture of JDBC.	CO5	L2	5M
	b	Difference between JDBC and ODBC.		L3	5M
11		OR			
11	a '	Write a java JDBC program to display student details.	CO5	L3	5M
	b ł	"Xnlain the steps to connect with the 1,41 is made		L2	5M
		*** FND ***	-		

*** END ***

O.F	P.Code:18CS05	10	R18	H.T.No.					
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR								
			· · · · · · · · · · · · · · · · · · ·	DNOMOUS)					
	B.Tech II	Year II S			Examinations	May-202	ō		
				FING SYSTE					
•			(Computer Sci	ience and Engi	neering)	3/	B/F 1	60	
111	ie: 3 Hours					Max.	Mar	(S: 60	
		(A nation all the	PART-A	2 = 10 Marks)				
1	a List the service			•	2 - 10 Marks)	CO 1	L1	2M	
1	b Define Thread	.	u by all Operat	ing System.		CO1 CO2	L1 L1	2M	
	c Define semap					CO2	L1 L1	2M	
			cement Strateg	ries		CO3	LI L2	2M	
	e What are the	<u> </u>	_	5105.		CO5	L1	2M	
	e minut die the	1 110 7 100100		PART-B		005		2111	
			(Answer all Fi	ve Units 5 x 1	0 = 50 Marks)				
			(UNIT-I					
2	a Explain Opera	ating System	n Structures			CO1	L2	5M	
-	b Explain Syste	•				CO1	L2	5M	
	D Explain Syste	in i rogium	5.	OR		001		5111	
3	Explain briefly d	lifferent tvn	es of System o			CO 1	L5	10M	
5		interent typ	es or system e	UNIT-II		001	LU		
4	Explain CPU Scl	heduling Al	gorithms with			CO2	L5	10M	
7	Explain Cr O Bel		igoritiniis with	OR		002	LJ	TOIVI	
5	Evaluate Rou	nd CPU Scl	neduling algori	ithm for given	Problem	CO2	L5	10M	
U	Time slice $=3$		ing angoin		11001011	001			
	Process	P1	P2	P3	P4				
	Process	10	5	18	6	-			
	Time								
	Arrival	5	3	0	4				
	Time								
				Interior Alternative Contractor					

	UNIT-III			
6	Define process synchronization and explain Peterson solution algorithms.	CO3	L2	10M
	OR			
7	Write about Deadlock Prevention Methods.	CO3	L5	10M
	UNIT-IV			
8	Explain the following disk scheduling algorithm with proper diagram	CO 4	L5	10M
	i) FCFS ii) SSTF iii) SCAN iv) LOOK v) C-SCAN.			
	OR			
9	a Explain the following:	CO 4	L2	5M
	i) Paging ii) Segmentation			
	b What is contiguous memory allocation? Explain it	CO4	L2	5M
	UNIT-V			
10	a Discuss about File type.	CO5	L6	5M
	b Explain about File operation.	CO5	L5	5M
	OR			
11	Explain file allocation methods in detail.	CO5	L2	10M

*** END ***

 $(p)^{i}$

	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)			
	B.Tech I Year II Semester Supplementary Examinations Ma Programming for Problem Solving	зу-2025 Э		
Tim	(Common to ECE, CSE & CSIT) e: 3 Hours	Max. I	Mark	s: 60
11110	PART-A			
	(Answer all the Questions 5 x $2 = 10$ Marks)			
1	a Differentiate between an algorithm and a flowchart.	CO 1	L2	2M
T	b Write a program to print the multiplication table from 1 to n.	CO2	L3	2M
	c How to declare and initialize a 1-D, 2-D array? Illustrate with an		L3	2M
	example.			
	d Define a pointer array.	CO4	L1	2M
	e How to represent self-referential structures?		L2	2M
	PART-B	000		
	(Answer all Five Units 5 x $10 = 50$ Marks)			
	UNIT-I			
2	a Sketch the structure of a general C program and explain the same.	CO1	L2	5M
	b Write a program to perform the swapping of two numbers without using a	a CO1	L3	5M
	temporary variable.			
	OR			
3	a Write an algorithm and a flowchart to generate the Fibonacci series o	f CO1	L2	5M
	numbers up to 'n'.	~~ ~ ~		
	b Draw the flowchart to find the greatest of three numbers.	CO 1	L3	5M
4	Explain various branching statements in C with examples.	CO2	L2	10M
_	OR			
5	Enlist and explain the loop control or iteration statements in C.	CO2	L2	10M
	UNIT-III			
6	a Discuss the different categories of functions.	CO3	L2	5M
U	b Write a C program to illustrate the call-by-value parameter passing		L2 L3	5M
	technique.	5 000	13	0171
	OR			
7	a What is recursion? What are the advantages and Disadvantages o	f CO3	L2	4M
/	recursion?	1 000		
	b Write a C program to find the factorial of a given number using recursion	CO3	L3	6M
	UNIT-IV		200	0112
0		CO4	т 2	5M
8	a Explain the concept of functions returning pointers with an example.	004		
	b Write a C program to read and print an array of elements using pointers.			5M
•	OR	COA	1.2	534
9	a Explain the declaration and initialization of an array of strings.	CO4	L2	5M
	b Write a C program to find whether a given string is a palindrome or not.	CO 4	L3	5M
	UNIT-V			
10	a Define a Structure and write the general syntax for declaring and	d CO5	L2	5M
	accessing members.	_		_
	b How to copy and compare structure variables? Illustrate with an example	. CO5	L3	5M
	OR			
11	a How are data elements stored under unions? Explain with an example.	CO5	L2	5M

H.T.No.

R18

O.P.Code: 18CS0501

b Write a C program to illustrate the concept of structure within structure. **CO5** L3

*** END ***

5M

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

R18

H.T.No.

B.Tech II Year II Semester Supplementary Examinations May-2025 **BIOLOGY FOR ENGINEERS**

(Common to ECE, CSIT CSE)

Max. Marks: 60

	nc.	5 110415	max.	warr	s: 60
		PART-A			
4		(Answer all the Questions $5 \ge 2 = 10$ Marks)			
1		What are autotrophs & heterotrophs?	CO1	L2	2M
	b		CO1	L1	2M
	c	What is meant by dominant and recessive?	CO2	L1	2M
	d	How many types of nucleic acids are there? Write any two functions.	CO3	L1	2M
	:: e	What are the general features of TCA cycle?	CO5	L2	2M
		$\frac{PART-B}{HE}$			
		(Answer all Five Units $5 \ge 10 = 50$ Marks)			
		UNIT-I			
2		Draw ultra structure of Prokaryotic cell.	CO1	L1	5M
	b	Compare the characteristics of Prokaryotic and Eukaryotic cell.	CO1	L2	5M
•		OR			
3	a	Draw neat labeled diagram of Plant cell. Write the differences between	CO 1	L1	5M
		Plant cell and Animal cell.			
	D	Define classification. Give an account on three Kingdom classifications.	CO 1	L2	5M
		UNIT-II			
4	a	Explain Mendel's law of segregation and independent assortment in	CO2	L2	5M
		terms of genetics			
	b	What is Mitotic Cell division? Explain Mitosis with neat diagram.	CO2	L2	5M
-		OR			
5		Describe how color blindness is passed on to children.	CO2	L1	5M
	b	Discuss the mechanism and genetics behind Hemophilia.	CO2	L2	5M
		UNIT-III			
6		Describe the enzyme nature, properties and nomenclature.	CO3	L2	5M
	b		CO3	L1	5M
_		OR			
7		Summarize the types of RNA and its functions in cells.		L2	6M
	b	What are carbohydrates? Classify and explain monosaccharide's.	CO3	L1	4M
		UNIT-IV			
8	a	Draw a neat diagram of DNA double helix structure.	CO4	L1	6M
	b	What are the two Purines & Pyrimidines of DNA?	CO4	L1	4M
		OR			
9		Explain about Genetic material of DNA?	CO4	L2 =	5M
	b	Describe the structure and complementary base pairing of DNA.	CO4	L2	5M
		UNIT-V			
10	a	What are photo systems?	CO5	L1	5M
	b	Write a note on sterilization and various techniques used.	CO5	L2	5M
		OR			
11		Illustrate step by step process in Glycolysis.	CO5	L2	5M
	b	What is culture medium? Explain types of culture media based on its	CO5	L2	5M
		physical state.			
		And A THE THE A CAL			

*** END ***

(O.F	.Code: 18	BHS0801][R18].	H.T.No.										
	SIDD	HARTH INST	'ITU'			INEERING NOMOUS)	& 1	TEC	HN	OL	OGY	Y::	PUT	TUR		
	В.	Tech I Year II	Sen	nester S	Sup		/ Ex	am	ina	tion	s M	lay	-202	25		
Time	: 3 Hours	5	(Co	ommon to	o CE	C, AGE, ME	& EI	EE)			M	Iaz	c. M	arks	: 6	0
			(Δ	nswer oll	tha	PART-A Questions 5		- 10	Ма	mlra)						
1	a Define	e aromaticity an				-	x 2 -	- 10	Ivia	rks)			со	1 L	2	234
_		e cell potential.	ia 110.	ii ui ointuti	ony	· · · ·							CO			2M 2M
		n salts caused to	tem	porary an	d pe	rmanent har	ines	S.					CO			21VI 2M
		hermosetting pl											CO			2M
		are chromophor											CO			2M
					181	PART-B									_	
			(A	nswer all	l Fiv	e Units 5 x 1	0 =	50 1	Marl	(s)						
						UNIT-I										
2	Explain tl	he Schrodinger	wave	e equatior	ı for	the wave me	echa	nica	l mo	odel	of a	n	CO	L L	3	10M
	atom. Giv	ve the significan	ice of	f wave fu	ncti	on.										
						OR										
3		the postulates of				-							CO	L	2	4 M
	b Explai	in the crystal fie	eld sp	olitting of	orb	ital's in octa	hedr	al c	om	olexe	es.			$\mathbf{L}_{\mathbf{L}}$	t .	6M
						UNIT-II				i.						
4		ie various facto			the	rate of corro	sion	bas	ed o	n na	ture		CO 2		2	10M
	of metal &	& nature of envi	ronn	nent.												
_						OR										
5	-	n electroplating											CO 2	L2	2	5 M
	b Write a	a note on solubi	lity p	roduct.												5 M
						UNIT-III							1			
6	Describe	the Ion exchang	ge pr	ocess for	dei	nineralizatio	n of	wa	ter.	wha	t ar	e	CO3	L2	r	10M
	the advant	tages and disady	vanta	ges of ior	n ex	change proce	ss?									
-	¥¥ 71					OR										
7		re the units to e			ss of	f water?							CO3	L2		5M
	b What is	s Priming and F	oami	ng?									CO3	L2		4M
-						UNIT-IV										
8	Write the j	preparation, pro	perti	es & uses	s of i								CO 4	L3		10M
•						OR										
9		oxidation and				s with examp	oles.						CO 4			6M
	b Explain	the synthesis o	t the	Penicilli	n.								CO 4	L3		4M
	_					UNIT-V										
10	Explain pr	inciple, instrum	nenta	tion and i	its a	pplications of	of Sc	ann	ing	Elec	tror	1 (CO5	L3	-	10M
	Microscop	y (SEM).														
						OR										

11 Give an account on principle and instrumentation of IR spectroscopy . CO5 L3 10M *** END ***

O.P.Code:18EC0420

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY .: PUTTUR

H.T.No.

(AUTONOMOUS)

R18

B.Tech III Year II Semester Supplementary Examinations May-2025 MICROPROCESSORS AND MICROCONTROLLERS

(ECE & EEE)

Tim	• • '	3 Hours	Max.	Mark	s: 60
1 1111		PART-A			
		(Answer all the Questions $5 \times 2 = 10$ Marks)			
1	a	Define machine language.	CO1	L2	2M
I	_	Give the significance of instruction decoder.	CO2	L2	2M
	b	List out the interrupts of $8051 \mu\text{C}$.	CO2	L2	2M
	c		CO3	L2	2M
	d	Compare RLC A and RRC A.	CO4	L2	2M
	e	Give the different methods to implement switch debouncing.	001		
		$\frac{PART-B}{II First II - 50 Marks}$			
		(Answer all Five Units 5 x $10 = 50$ Marks)			
		UNIT-I	a a 1		1035
2		Explain how computers are classified from large computers to single chip	CO1	L2	10M
_		microcontrollers.			
		OR			
3	a	What is the need of memory? And classify different types of memory.	CO1		5M
		Compare RAM and ROM memories.	CO1	L2	5M
	~	UNIT-II			
		Sketch neat block diagram of 8085 microprocessor. Explain.	CO2	L2	5M
4	a	Explain the different types of interrupts available in 8085 μ P.	. CO2		5M
	b	Explain the different types of interrupts available in 6000 µr.			
			CO2	L2	6M
5	a	Define the following pins: i) READY ii) ALE iii) RESET	CO2	L2 L2	4M
	b	List out the important features of 8085 microprocessor.	CO_2	1.2	HIVL
		UNIT-III			
6	8	Describe the functionality of I/O ports present in 8051 µC.	CO2	L2	5M
Ū	h	Draw the flag register of 8051 μ C and describe the functionality of each flag in	CO2	L2	5M
		detail.			
		OR			
7		Draw the pin diagram of 8051 μ C and describe the functionality of each pin	CO2	L2	10M
		indetail.			
		UNIT-IV			
8	a	Write an assembly program of 8051 μ C to subtract two 8-bit numbers and store	CO3	L4	7M
0	а	the result in a memory location.			
	h	Expalin the operation of DAA instruction with its syntax.	CO3	L2	3M
	U	OR			
9		List various addressing modes of 8051 microcontroller and explain them with an	CO3	L2	5M
7	a	example each.			
	h	Explain Jump and Call instructions of 8051 μ C with an example.	CO3	L2	5M
	IJ	UNIT-V			
			CO4	L4	7M
10	a	With the help of a neat diagram, show the interfacing of 7- segment display with	001		7 1 T.M.
		8051 μ C and explain its operation.	CO4	L2	3 M
	b	Write a short note on 7-Segemnt display. OR			
			CO4	L4	10M
11		Describe with a schematic, the scanning of the 4x4 matrix keyboard in an 8051	004	LT	TOIL
		basedsystemand identifying thekeypressed.			

*** END ***

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

H.T.No.

(AUTONOMOUS)

R18

B.Tech III Year II Semester Supplementary Examinations May-2025 ENVIRONMENTAL ENGINEERING

(Civil Engineering)

Time: 3 Hours

Max. Marks: 60

]	PART-A				
			(An	swer all the Q	uestions $5 \ge 2 = 1$	10 Marks)			
1	a	List out variou					CO1	L2	2M
		Define coagula					CO2	L1	2M
		List four factor		OWF.			CO3	L2	2 M
	d	What is the pri			ng filters?		CO4	L1	2M
	е	List the method	*	•	0		CO5	L2	2M
	-			~	PART-B				
		3	(A:		Units $5 \ge 10 = 5$	0 Marks)			
	n."		× ×			1			
					UNIT-I				
2	9	What is design	period? Writ	1	ffecting the desig	in neriod	CO1	L1	5M
4		Explain the var	-		ficeting the desig	sii perioa.	CO1	L2	5M
	U	Explain the val		ter demand.	OR		001		5111
3		Population of	a town as of	stained from t	he census repor	te is as below.	CO1	L3	10M
3		-			ades by (a) Arith		COI	ĽJ	TOM
		-	*		ental Increase M				
		Year	1951	1961	1971	1981			
		Population	100000	109000	116600	128200			
		Topulation	100000	109000	110000	128200			
				Б	UNIT-II				
		D., (1, 1,	4 1			1	000	тa	5 3.4
4	a		-	ral outline of	surface and su	osurface water	CO2	L2	5M
	1	treatment plant		C			con	то	51 4
	D	Write short not	es on types o	r screens.	0.10		CO2	L2	5M
-		T*	. 6 11 1		OR	11	000	тa	~) /
5	a		of chlorinat	ion and expla	in break point	chiorination in	CO2	L2	5M
	L	detail.		f a sat of som	I am I filtown for	turatin a matan	CON	тэ	5 1 /
	D				d sand filters for		CO2	L3	5M
			population of	10000 with a	in average rate of	or demand 200			
		lpcd.						20	
				F	INTEL TIT				
		A , • 1• · ·			NIT-III	00000 11	000	T 2	107 5
6					d population of		CO3	L3	10M
				Find the desi	gn discharge for	the sewer line,			
		for the followir	•	1 000					
		(i)	Kate of wate	er supply $= 200$) LPCD				

- (ii) Average impermeability coefficient for the entire area =0.3
- (iii) Time of concentration = 50 minutes.

OR

- 7 a List different types of sewerage system? Give the advantages and CO3 L2 6M disadvantages of any one system.
 - **b** What are sewer appurtenances? Sketch and explain the use of drop man CO3 L2 **4M** hole.

		UNIT-IV		5	
8		Design a grit chamber for a maximum wastewater flow of 10000 m ³	CO4	L3	10M
		/day to remove particles up to of 0.25 mm dia, having specific gravity of			
		2.65. The settling velocities of these particles is found to range from			
		0.02 to 0.025 m/sec. Maintain a constant flow through velocity of			
		0.28 m/sec through the provision of a proportional flow weir.			
		OR			
9	a	With a sketch, explain the working of a grit chamber.	CO4	L2	5M
	b	Design a primary sedimentation for treating 1 MLD of wastewater.	CO4	L3	5M
		Make suitable assumptions.	3		
		UNIT-V			
10		Design a septic tank for 200 persons assuming water supply as 120 lpcd.	CO5	L3	5M
		OR			
11	a	Explain the factors affecting the sludge digestion.	CO5	L2	5M
	b	Explain the process involved in self-purification.	CO5	L2	5M
		*** END ***			0
					1. J.

(a. e)

÷

2

1

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

H.T.No.

B.Tech II Year II Semester Supplementary Examinations May-2025 FORMAL LANGUAGES AND AUTOMATA THEORY

(Common to CSE & CSIT)

R18

Max. Marks: 60

PART-A (Answer all the Questions $5 \times 2 = 10$ Marks)

(
a Define Grammar? What are the tuples.	CO1	L1	2M			
b What is FA?	CO2	L2	2M			
c Define LR.	CO3	L3	2M			
d What is PDA?	CO4	L1	2M			
e Define an Expression.	CO5	L2	2 M			
PART-B						

(Answer all Five Units $5 \ge 10 = 50$ Marks)

UNIT-I

2	a Define	NFA. What are the c	lifferences betwe	een DFA & NFA?	CO1	L3	3 M
	b Minimi	ze the following DF.	А.		CO1	L2	7M
		Present states	i/p=0	i/p=1			
		q 0	q1	q2			
		q 1	q2	q3			
		q2	q2	q4			
		* q3	q3	q3			

**Here q0 is initial state and q3 and q4 are final states.

q4

q5

*q4

q5

OR

q4

q4

3 Convert the following NFA with ε moves to DFA without ε moves. CO1 L3 **10M**

UNIT-II

4	a Construct an equivalent FA for the given regular expression	CO2 L1	5M
	$(0+1)^*(00+11)(0+1)^*$		
	b List out the identities rules of Regular expression.	CO2 L1	5 M
	OR		
5	a Construct an equivalent FA for given regular expression	CO2 L3	5M

valent FA for given regular expression $(0+1)^*(00+11)(0+1)^*$

b Prove that the language $L = \{a^n b^n c^n \mid n \ge 1\}$ is not regular using pumping **CO2** L1 5M lemma.

	UNIT-III			
6	a Construct CFG for the language consisting of palindromes of the string?	CO3	L2	5M
	b Define Ambiguous grammar with one example?	CO3	L2	5M
	OR			
7	a Perform left factor from the grammar $A \rightarrow abB/aB/cdg/cdeB/cdfB$.	CO3	L3	6 M
	b Explain Left recursion and Left factoring.	CO3	L3	4M
	UNIT-IV			
8	a Write the process for convert PDA into an equivalent CFG.	CO 4	L2	6M
	b A PDA is more powerful than a finite automaton. Justify this statement.	CO 4	L2	4M
	OR			
9	a Define Instantaneous description (ID) in PDA.	CO4	L2	5M
	b Explain the graphical notation of PDA with one example.	CO4	L2	5M
	UNIT-V			
10	Explain in detail about variations of the TM.	CO5	L1	10M
				~
	OR			()
11	Construct a Turing machine that recognizes the language a ⁿ b ⁿ c ⁿ .	CO5	L1	10M
	*** END ***			

3

H.T.No. **R18**

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech. III Year II Semester Supplementary Examinations May-2025

WEB TECHNOLOGIES

(CSE & CSIT)

Max. Marks: 60

Time	3 H	ours PART-A			
		(Answer all the Questions $5 \ge 2 = 10$ Marks)			A 1 F
4		Interpret comments in HTML.		L2	2M
1	T.	List the giv IavaScript data types.		L1	2M
	b	Compare the functions of doGet() and doPost() methods.	CO3	L2	2M
	c d	Define cookies.	CO4	L1	2M
	u e	What is WSDL?	CO5	L1	2M
	C	PART-B			
		(Answer all Five Units $5 \ge 10 = 50$ Marks)			
		UNIT-I	0.01	тэ	514
2	ิด	Develop a HTML table with columns for a Country name, National sport,	CO1	L3	5M
4	а	National flower, National animal, National tree. There must be atleast			
		five states as rows in the table	CO1	L2	5M
	b	Explain about table tags with suitable example.	CO1	LZ	5101
		OR	CO1	L3	5M
3	a	Build web page with Images and give example .	CO1	L2	5M
	b	Summaruize about Working with Links and UKLS with example.	COI	112	2111
		UNIT-II	CO2	L2	5M
4	a	Discuss in detail about backgrounds in CSS.	CO2		5M
	b	Analyze in how many ways we can insert CSS in an html document with	002	L4	5101
		an example for each.			
		OR	CO2	L2	5M
5	a	Define Function in JavaScript and explain functions with arguments.	CO2	 L4	5M
	b	Examine the features of cascading style sheets	00-	_	
		UNIT-III	CO3	L2	5M
6	a	Illustrate about working of cookies with an example.	CO3	L2 L3	5M
	b	Build servlet code to get parameters from HTML document.	COJ	5	0111
		UK	CO3		4M
7	a	Explain about a)HTTP servlet Request b)HTTP servlet Response with	000	L2	
		syntax.	CO3	т э	6M
	k	bevelop a Java servlet program to change the Background color of the		L3	
		page by the color selected by the user from the list box			
			CO4	L2	4M
8	8	Explain DOM based XML processing.			6M
	1	Write a php program to check the user credentials, whether they are		L3	
		correct are not. If the credentials are correct then the user will be			
		redirected to another page. OR			
			CO4	L2	5M
9) ;	 Describe program control statements in PHP. What is the difference between Session and Cookie? Write a program to 	o CO4	L3	5M
]	b What is the difference between Session and cookie. While a page of create a session, to set a value in session, and to remove data from a	ì		
		session			

UNIT-V a Discuss the security issues of AJAX. 10 CO5 L2 5M **b** Identify the method of creating a web service client with an example. CO5 L3 5M OR **a** What is the difference between XML HTTP Request and AJAX ? 11 CO5 L2 5M **b** Build a program to show how XML is changing the Web. CO5 L3 5M *** END ***

Кж

Time: 3 Hours

R18

falf£lês é v_a

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY .: PUTTUR (AUTONOMOUS) B.Tech I Year II Semester Supplementary Examinations May-2025

MATHEMATICS - II

(Common to All)

Max. Marks: 60

1 111	IC.	Silouis	max.	WATE	(S: 6U
		$\frac{PART-A}{2}$			
1	-9	(Answer all the Questions $5 \ge 2 = 10$ Marks) Verify the Exactness of $(2x - y + 1) dx + (2y - x - 1)dy = 0$	CO1	L2	2M
- E	b	Find Particular Integral of $(D^2 + 6D + 9)y = 2e^{-3x}$	CO1	L2 L2	2M
			CO2		
	C	Evaluate $\int_0^1 \int_0^1 \frac{dx dy}{\sqrt{1-x^2}\sqrt{1-y^2}}$	COS	L2	2M
	d	Define Bilinear Transformation	CO4	L1	2M
	e	State Cauchy's residue theorem	CO5	L1	2M
		(Answer all Five Units 5 x $10 = 50$ Marks)			
		UNIT-I			
2	a	Solve $\frac{dy}{dx} + \frac{y\cos x + \sin y + y}{\sin x + x\cos y + x} = 0$	C01	L2	5M
	b	Solve $x \frac{dy}{dx} + y = x^3 y^6$	CO1	L2	5M
2		OR OR	601		-
3		Solve $y = psinp + cosp$ Solve $y = 2px + y^2p^3$	CO1 CO1	L2	5M
	U	Solve $y = 2px + y p$	COI	L2	5M
4		Solve $(D^2 + 1)y = \cos x$ by method of variation of parameters	CO2	L2	10M
		OR	002		TOUL
			CO2	L2	10M
5		Solve $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = \log x$			
		UNIT-III			
6	a	Evaluate $\iint (x^2 + y^2) dx dy$ in the positive quadrant for which $x + y \le 1$.	CO3	L2	5M
	b	Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{dxdydz}{\sqrt{1-x^{2}-y^{2}-z^{2}}}$	CO3	L2	5M
		$\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{1}{\sqrt{1-x^{2}-y^{2}-z^{2}}}$			
		OR			
7		Change the order of integration in $I = \int_{1}^{1} \int_{1}^{2-x} (xy) dy dx$ and hence evaluate	CO3	L2	10M
		$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$			
		UNIT-IV			
8	a	Show that $u = \frac{1}{2} log(x^2 + y^2)$ is Harmonic	CO4	L2	5M
	b	Find an analytic function whose real part is $e^{-x}(x \sin y - y \cos y)$.	CO4	L2	5M
		OR			
9		Find the bilinear transformation which maps the points $(\infty, i, 0)$ in to the	CO4	L2	10M
		points $(-1, -1, 1)$ in w-plane			
		8			

	UNIT-V	~ 8		
10	a Evaluate the line integral $\int_{c} (y - x - 3x^2 i) dz$ where c consists of the line	C05	L2	5M
	segments from $z = 0$ to $z = i$ and the other from $z = i$ to $z = i + 1$.			
	b Evaluate $\int_{c} \frac{\log dz}{(z-1)^3}$ where $c: z-1 = \frac{1}{2}$ using Cauchy's integral formula	CO5	L2	5M
	OR			
11	a Find the Laurent series of the function $f(z) = \frac{z}{(z+1)(z+2)}$ about $z = -2$	C05	L2	5M
	b Find the residue of the function $f(z) = \frac{1}{(z^2 + 4)^2}$ where c is $ z - i = 2$	CO5	L2	5M
	*** END ***			

ŝ,

ŝ

-

3

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

R18

H.T.No.

B.Tech | Year || Semester Supplementary Examinations May-2025 ENGINEERING GRAPHICS& DESIGN

(Common to CE, AGE, ME, & EEE)

Max. Marks: 60

(Answer all Five Units 5 x 12 = 60 Marks)

- a Draw an ellipse having major axis is equal to 100 mm and the minor axis
 b Draw a parabola having a distance of 50 mm between the focus and
 b L2 6M
 - b Draw a parabola having a distance of 50 mm between the focus and L2 6N directrix. Draw a normal and tangent to the parabola at a point 35 mm from the focus.

OR

2 Draw the hypocycloid of a circle of 50mm diameter which rolls inside L2 12M another circle of 100 mm diameter for one revolution. Draw tangent and normal at any point on the curve.

UNIT-II

- Draw the projections of the following points, keeping the distance between L2 12M the projectors as 25mm on the same reference lines. A – 20mm above HP and 30mm in front of VP
 - B 20mm above HP and 30mm behind VP
 - C 20mm below HP and 30mm behind VP
 - D 20mm below HP and 30mm in front of VP
 - E On HP and 30mm in front of VP
 - F On VP and 20mm above HP
 - G Lying on both HP and VP

OR

- 4 A line AB, 50mm long, has its end A away from the HP and VP than end B. L2 12M The line is inclined to the HP at 30 degree and to the VP at 45degree. Draw the projections if end A is 35mm above the HP and 50mm in front of the VP.
- 5 A square plane ABCD of side 30mm, is parallel to HP and 20mm away from it. Draw the projections of the plane, when (i) two of its sides are parallel to VP and (ii) and one of its side is inclined at 300 to VP.

OR

6 Draw the projections of a cone, base 30 mm diameter and axis 50 mm long, resting on HP on a point of its base circle with (a) the axis making an angle of 450 with HP and its top view making an angle of 300 with VP.

UNIT-IV

7 A cube of side 40 mm, is resting on HP on one of its faces, with a vertical face inclined at 30 degree to VP. It is cut by a section plane inclined at 45 degree to HP and passing through the axis at 8 mm from the top surface. Draw the projections of the solid and also show the true shape of the section.

OR

8 A square pyramid, with side of base 30 mm and axis 50 mm long, is resting on its base on HP with an edge of the base parallel to VP. It is cut by a section plane, perpendicular to VP and inclined at 45 degree to HP. The section plane is passing through the mid-point of the axis. Draw the development of the surface of the cut pyramid.

UNIT-V

Draw the isometric projection of a pentagonal prism of base side 35 mm and axis 60mm. The prism rests on its base on the HP with an edge of the base parallel to the VP.

OR

Draw three views of the blocks shown pictorially in figure according to first L2 12M angle projection

9

10

12M